中小学数学衔接初探
文/张雷
小学生升入中学后开始时成绩不错,过了一段时间往往有一部分人数学成绩落了下来,尤其到了初二情况更是严重。小学和中学教学方法是有差异的,要求也不相同。学生长期在小学学习适应了小学的教学方法,到了中学部分人不能适应,一落下来就很难赶上。为了使学生能够迅速适应中学的教学,必须解决好小学数学教学和中学教学的衔接问题。
一、引导学生进行逻辑思维
小学生的思维方式正处在从具体形象思维向抽象逻辑思维的过渡阶段。他们的思维一般要借助实物、图形或者头脑中的表象来进行。应当肯定,形象思维是一种很好的思维方法,可以终生受用。但是,仅有具体形象思维是不够的,还必须掌握抽象逻辑思维的方法,以提高思维能力。教学中可以渗透一些抽象逻辑思维的因素。如教一位数加法,就不必每题都摆弄教具,可指导学生进行算理的推敲(其实很多教师都做了)。例如教8+7,可以指导学生这样算,8只需补上2就得10,从7里面拿出2与8相加之后余下5,所以8+7=15.又如解答归一问题“4匹马5天吃精饲料100千克。照这样计算,6匹马7天吃精饲料多少千克?”如果画图表示题意寻求解题方法就很难,而且画出的图太繁反而失去直观作用。可以引导学生冷静而深入地思考:要求“6匹马7天吃多少千克”需要知道“1匹马1天吃多少千克”。从“4匹马5天吃100千克”可以求出“1匹马1天吃多少千克”。题目说明“照这样计算”表明这个标准不改变,可以用来求“6匹马7天吃多少千克”。思考到这里可以肯定分两大步解答:①求4匹马1天吃多少,再求1匹马1天吃多少;②求1匹马7天吃多少,再求6匹马7天吃多少。本题的解法是:100÷5÷4×7×6=210(千克)或者100÷4÷5×6×7=210(千克)。
二、适当开展简单的证明,适时培养空间想象力
小学数学教学只要求教师通过实验得出结果就可以作出结论,至于结论成立与否并不作论证。久而久之,学生就会认为实验就是证明,这种观念对学习数学非常不利。教师可以在适宜的问题抓住时机作一些论证,使学生确信所得结论的必然性,更重要的是使学生知道数学的严密性。例如,教学时可以使用不完全归纳法。如15×20=300,20×15=300,所以15×20=20×15;18×125=2250,125×18=2250,所以18×125=125×18,……经过多次实验都得到交换因数位置积不变的结果,从而归纳出乘法交换律,切忌一例立论。简单的证明可使学生领略数学的严密性。
数学教学要培养学生初步的空间观念,使学生对物体的形状、大小、位置、方向、距离等有明确的认识,对学过的形体能够在头脑中形成表象。教师要引导学生借助表象进行思考,并以此为起点培养学生初步的空间想象力。如解答篮球场铺混凝土多少立方米的应用问题,应引导学生想象出这些混凝土铺在球场上将形成一个长方体,混凝土的厚度就是这个长方体的高。又如解答长方体形状的粪池四壁和池底涂抹水泥问题,应引导学生想象出这个池无盖,涂抹面只有5个。
三、教好简易方程和几何初步知识
教好小学教材中的简易方程,不要人为拔高,不要引进中学的定理、方法。例如,列方程解应用题不急于计算结果,首先把各数的位置摆好,然后找出数量之间的相等关系,根据数量关系建立方程,用等式表达未知数和已知数之间的关系,然后解方程求答数。列方程解应用题能解答复杂疑难的问题,是中学数学的主要解题方法,小学学习阶段应该认真做好孕伏。
小学要教好几何初步知识,为中学作准备。教学中应认真进行操作性练习。如①过直线外的一点作直线的垂线和斜线,量该点到直线之间的各条线段,找出其中最短的。②过角内的一点作两边的垂线和平行线,看哪种画法得到平行四边形。③过线段两端各作一条垂线;过线段的一端作一个直角,另一端同侧作一个45°的角;过线段的一端作30°的角,另一端同侧作60°的角;过线段两端同侧各作一个75°的角;过线段两端同侧分别作30°和45°的角,看哪种作法能得到三角形,得到怎样的三角形。
四、认真渗透数学思想
教材里隐含有函数、对应、集合等内容,教学时应挖掘出来进行渗透,但不给概念。函数的例子随处可见。如“桃树棵数比李树的2倍多5棵”,用关系式表示是:桃树棵数=李树棵数×2+5其中“李树棵数”是自变量,“桃树棵数”是自变量的函数。“李树棵数”变化,“桃树棵数”也随之变化。
对应思想在小学数学教材里随处可见,把求相差转化为求剩余就是其中一例。如:"有红花6朵,黄花有4朵,红花比黄花多几朵?"通过图示一一对应,发现红花里有4朵和黄花一样多,另外还剩下2朵,即红花比黄花多2朵。
集合思想在数的整除里有过广泛的运用,有些思考题也应用集合来解答。数学思想融汇在教材之中,要注意挖掘,进行渗透,使学生及早接触并初步领略它。
五、加强思维品质的培养
在数学教学中,应有意识地培养学生良好的思维品质。思维要有方向,有根据,不能胡思乱想。如用分析法分析数量关系,寻找解题方案,是从问题出发进行分析推理,形成解题思路,方向很明确。研究其他问题也可以这样进行。思维应有灵活性。要提倡学生从多角度去考虑同一问题,用多种方法去解决,不应强求统一,但要注意鼓励学生采用最佳的方法。
提高学生的思维能力需要讲究方法,还要加强训练。总之,良好的思维品质不能给予,但可以培养,要给学生锻炼的机会,并坚持不懈。