G50 X800.0 Z800.0;
N1 T0101 S80 M03 M41 M08;
G65 P1 A0.8 B0.5;
M01;
;
N2 T0202;
G65 P2 A0.8 B0.5;
M01;
;
N3 T0303 S15;
G65 P3 A0.1 B0.05;
M01;
;
N4 T0404;
G65 P4 A0.036;
M05 M09;
M30;
O0001;
/#3 = 2 * #1;
/N1 #4 = 245.6 - #3;
N2 M98 P5;
/IF [#3 LE 4.8] GOTO 7;
/#5 = 212.3;
/GOTO 8;
/N7 #5 = 205.5;
/N8 #4 = #4 - #2;
/IF [#4 GE #5] GOTO 2;
/#4 = #4 + #2;
/IF [#4 EQ #5] GOTO 13;
/#4 = #5;
/GOTO 2;
/N13 #3 = #3 + 2 * #1;
/IF [#3 LE #14.4] GOTO 1;
X800.0 Z800.0 T0100;
M99;
O0002;
/#3 = 2 * #1;
/N1 #4 = 248.0 - #3;
N2 M98 P5;
/IF [#3 LE 8.0] GOTO 7;
/#5 = 250.3;
/GOTO 8;
/N7 #5 = 254.15;
/N8 #4 = #4 + #2;
/IF [#4 LE #5] GOTO 2;
/#4 = #4 - #2;
/IF [#4 EQ #5] GOTO 13;
/#4 = #5;
/GOTO 2;
/N13 #3 = #3 + 2 * #1;
/IF [#3 LE #14.4] GOTO 1;
X800.0 Z800.0 T0200;
M99;
O0003;
/#3 = 2 * #1;
#4 = 205.8;
N1 M98 P5;
/IF [#3 GT 4.8] GOTO 2;
/#3 = #3 + 2 * #1;
/GOTO 1;
/N2 #3 = #3 + 2 * #2;
/IF [#3 LE 12.6] GOTO 1;
X800.0 Z800.0 T0300;
M99;
O004;
/#3 = 7.2 + 2 * #1;
#4 = 253.75 + #1;
N1 M98 P5;
/IF [#3 GT 4.8] GOTO 2;
/#3 = #3 + 2 * #1;
/GOTO 1;
/N2 #3 = #3 + 2 * #2;
/IF [#3 LE 12.6] GOTO 1;
X800.0 Z800.0 T0400;
M99;
O0005;
G00 Z#4;
X[298.91 - #3];
G32 Z205.0 F57.15;
X[302.104 - #3] Z173.0;
X[304.83 - #3] Z140.0;
X[307.092 - #3] Z105.0;
X[308.708 - #3] Z70.0;
X[309.677 - #3] Z35.0;
X[310.0 - #3] Z0;
X[309.677 - #3] Z -35.0;
X[308.708 -#3] Z-70.0;
X[307.092 - #3] Z-105.0;
X[304.83 - #3] Z-140.0;
X[303.246 - #3] Z-160.0;
G00 X330.0;
M99;
如果在万能车床上加装仿形模板来车削此导轮,一是需要专门改装一台设备;二是此种传统的车螺纹方法每刀都要经过“手动进刀→正转启动切削螺纹→手动(急)退刀和停车→反转启动将刀纵向退回”这样的过程,加工每件产品需成千次地启动、刹车和改变主轴转向,相当费离合器;三是用传统车床连第1、2把刀也只能使用平头切断刀,只能用很慢的转速和很小的吃刀量,不像数控机床能使用涂层硬质合金机夹刀片。因此用传统机床每件得由一名技工车削一星期。而在数控车床上用宏程序加工鼓形螺旋槽一般不会打刀。这样,执行这四个程序只要各启停一次,且不用反转。由于每个程序执行过程中都是连续全自动车削,所以加工一件机动时间只需4小时,加上装卸工件也只要5个小时,比传统方法提高效率10倍,而且不必由高级车工操作。用此法切出来的导轮坯的精度和表面粗糙度明显提高。
参考文献
1 丰飞.用户宏程序在数控加工中的应用[J].新技术新工艺,2006,(1).
2 孙德茂.数控机床车削加工直接编程技术.北京:机械工业出版社,2005
3 黄康美.数控加工实训教程[M].北京: 电子工业出版社.2004.
4 PetercSmid.FANUC数控系统用户宏程序与编程技巧.北京:化学工业出版社,2007
5 冯志刚.数控宏程序编程方法技巧与实例.北京:机械工业出版社,2007